Automatic Problem Generation for Capture-the-Flag Competitions

Jonathan Burket
Carnegie Mellon University
jburket@cmu.edu

Christopher Ganas
Carnegie Mellon University
cganas@cmu.edu

Abstract

Computer security games, especially capture-the-flag
(CTF) competitions, are growing in popularity. A typ-
ical CTF contest presents users with a set of hacking
challenges, where correct solutions reveal a text “flag”
that can be submitted to a scoring server. In traditional
CTF architectures, the problem and the flag are the same
across the competition.

In this paper we discuss automatic problem generation
(APG), where a given challenge is not fixed, but rather
can have many different automatically generated problem
instances. APG offers players a unique competition expe-
rience and can facilitate deliberate practice where prob-
lems vary just enough to make sure a user can replicate
the solution idea. APG also allows competition adminis-
trators the ability to detect when users submit a copied
flag from another user to the scoring server. In 2014 we
ran a large-scale CTF competition called PicoCTF, where
we measured the prevalence of flag sharing. Our results
indicate that about 0.8% of flags submitted to AGP prob-
lems were copied, with 14% of teams submitting at least
one shared flag. In 68% of flag sharing cases, teams went
on to eventually solve the problem on their own.

1 Introduction

Capture-the-flag (CTF) competitions are exploding in
popularity. CTFs challenge players with computer secu-
rity problems from a wide spectrum of technical areas
ranging from cryptography to binary analysis. They are
used in a variety of roles, including outreach, education,
and prize-based contests.

There are multiple different formats of CTF competi-
tions. In this paper we focus on Jeopardy-style contests
where players are presented a menu of problems with
increasing point values. A correct solution to a problem
will reveal a flag, which is submitted to the score server
for points.

CTFs typically present each team with the exact same
set of challenges, where each challenge has the same flag.

Peter Chapman
Carnegie Mellon University
peter@cmu.edu

Tim Becker
Carnegie Mellon University
tjbecker@cmu.edu

David Brumley
Carnegie Mellon University
dbrumley@cmu.edu

There are several benefits to this approach, including sim-
plified challenge development and easy testing. However,
one significant disadvantage is that teams can copy flags
from other teams and submit the copied flags for points.
The potential damage for leaked flags is exacerbated in
longer competitions where there is more time for players
to post solutions that other teams can copy.

Automatic problem generation (APG) techniques cre-
ate new versions of problems, called problem instances,
that get distributed among teams. APG can ensure that
each team receives a different flag for a given problem,
mitigating the threat of copied or leaked flags. There
are a variety of ways to automatically generate problems,
each with different trade-offs. For example, in one type
of APG, every team gets the same challenge, but with a
unique per-team flag. This type of APG ensures a con-
sistent problem difficulty across all players, but serves
only to protect against flag sharing. A more sophisticated
APG may mutate problem instances in a way that pre-
serves the essence of the problem but alters the details
needed to solve the challenge. This type of APG offers
potential educational benefits, such as the ability to create
practice problems, but can be difficult to incorporate into
a competition.

In this paper we discuss automatic problem generation
techniques that we have investigated in research and de-
ployed in a large-scale competition called PicoCTF [5].
PicoCTF is an online capture-the-flag competition de-
signed to excite and educate middle and high school
students about computer science and security. In 2014,
PicoCTF had approximately 10,000 eligible players com-
peting on 3,000 teams.

While generating problems automatically is not a new
idea [1, 3, 12, 15, 17, 19], APG has yet to be widely
adopted in capture-the-flag competitions. With a large
number of players and significant prize money at stake,
CTFs require an APG solution that focuses on scalabil-
ity, simplicity, and balanced problem difficulty. In order
to meet these requirements, PicoCTF uses problem tem-

plates to generate a pool of problem instances with, at
minimum, unique flags per instance. Each team is then
assigned a problem instance such that two teams are un-
likely to receive the same instance. PicoCTF records
when a team submits a correct flag for a problem instance
they were not assigned, a strong indicator that the team
has copied the flag from another source.

In order to gain more insight into flag copying, includ-
ing the motivation and behavior of players who copy flags,
we have performed a variety of measurements in our 2014
competition. We find that flag copying accounted for
0.8% of submissions to automatically generated prob-
lems, with approximately 14% of teams submitting at
least one copied flag. Encouragingly, in 68% of flag shar-
ing cases, players who attempted to submit a copied flag
went on to solve the problem themselves, suggesting that
students who copy flags are still interested in solving the
problem and moving along in the game.

Overall, our contributions are as follows:

* We describe using APG in PicoCTF, a large-scale
cybersecurity competition. We also detail how our
performance, scalability, and balanced problem diffi-
culty goals shaped our APG design choices.

We present an evaluation of flag sharing in the
PicoCTF 2014 competition based on submissions to
automatically generated problems, ultimately finding
that flag sharing is relatively infrequent, but occurs
across many teams. We also find that flag sharing
is not strongly correlated with score, and is most
common among teams from the same school.

We have released the code for PicoCTF as an open-
source platform for hosting CTFs, which has already

been used in several other competitions'.

2 Background: PicoCTF

In this section we describe PicoCTF, a yearly security
competition first hosted in 2013. In prior work [5] we
have discussed the high-level design of the competition in
more detail, including the role and impact of PicoCTF’s
interactive game format.

PicoCTF is an online capture-the-flag (CTF) compe-
tition for middle and high school students developed by
students at Carnegie Mellon University. A Jeopardy-style
CTF, PicoCTF presents players with a series of security
challenges of increasing difficulty in areas ranging from
binary exploitation to forensics. A typical PicoCTF chal-
lenge requires students to exploit a vulnerability in a
binary program or web application, analyze encrypted
messages, or explore mangled images and file systems,
with the ultimate goal of uncovering a “flag” that can be
submitted to receive points and unlock new challenges.

PicoCTF 2014 had 3185 eligible teams consisting of
9,738 students solving 66 challenges over a 12 day period.

"http://hsctf.com http://tjctf.org

Students were eligible to win prizes if their team consisted
of five or fewer middle or high school students from the
United States. PicoCTF 2014 offered monetary prizes
of $1,000-$6,000 to the top ten highest scoring eligible
teams.

3 Automatic Problem Generation

Traditionally, capture-the-flag competitions feature a set
of fixed challenges, which each have a single solution
(flag) that is the same for all teams in the competition.
This makes problem deployment and scoring straight-
forward; all competitors receive the same content, and
checking for a correct solution is as simple as checking
submissions against a single fixed flag.

If, however, we allow different players to receive dif-
ferent versions of each challenge, we open up exciting
new possibilities both for cheating prevention and for
an improved educational experience. In the simplest
case, having different flags for each version of a given
problem ensures that two different players cannot triv-
ially share their answers to that problem. More dramatic
changes to individual problem instances offer potential
educational benefits by allowing players to solve multiple
instances for practice or as part of a second competition
playthrough.

Our goal in this research is to explore automatic prob-
lem generation in the context of capture-the-flag compe-
titions, where issues such as fairness and scalability are
especially critical.

3.1 Example Autogen Problem

Both PicoCTF 2013 and 2014 featured a simple problem
based on a Caesar Cipher, in which a plaintext message
is encrypted by replacing each letter in the message with
the letter n further in the alphabet for some integer n.

The version of this challenge in PicoCTF 2014 expands
upon the original with the addition of automatically gen-
erated (autogen) problem instances. When creating a new
instance, the server first generates a unique flag, append-
ing it to the message “thesecretpassphraseis”. The server
then picks a random encryption key » from the 26 possible
values and encrypts the plaintext. The resulting encrypted
message is then given to a team as a challenge.

This automatically generated Ceasar Cipher problem is
an example of a templated autogen problem, one where
the flag and potentially other constants in the problem are
randomized. Randomized flags and values can be used
in many types of problems, including uniquely generated
stack canaries, different field orders for a SQL injection
problem, etc.

The changes to the problem can also be more signif-
icant. For example, one experimental autogen problem
we created produces programs with unique sets of input
constraints that need to be satisfied to solve each instance.

http://hsctf.com
http://tjctf.org

We call these synthesized autogen problems.

3.2 Templated Autogen Problems

Templated autogen problems are challenges where each
instance shares a common template but uses a different
flag. Templated problems can also vary other parame-
ters in the problem, as with the encryption key in the
Caeser Cipher example. The goal of templated autogen
challenges is to detect and prevent flag-based cheating.

Flag Copying Prevention and Detection With auto-
gen problems, different competitors do not necessarily
see the same version of a given challenge and therefore
cannot reliably share flags. Additionally, if competitors
are unaware that different players have different problem
versions, then it is also possible to use autogen problems
to detect flag copying. If a team submits a flag that is a
solution to a different problem instance than the one they
received, then it is likely that the team collaborated with
a different team. We discuss how we used these detection
mechanisms for PicoCTF 2014 in Section 4.

Note that templated autogen problems help prevent flag
sharing. Since the core problem is still ultimately the
same, however, they do not prevent teams from sharing
their method for solving a given challenge.

Identifying the Source of Flag Disclosures With
more than 10,000 users competing in PicoCTF 2014, it
was difficult to ensure that no flags were publicly dis-
closed before the end of the 12 day competition. Indeed,
on multiple occasions, flags for earlier problems in the
competition were leaked either on public message boards
or video streaming sites.

When competitors leaked flags from autogen problems,
however, they were effectively revealing their identity,
since each team (with high probability) received a differ-
ent set of flags. The ability to identify the source of a
disclosure allowed us to, in most situations, contact the
player and request that they remove the flag, as well as
other exposed flags for problems that were not automat-
ically generated. Most large-scale flag disclosures for
PicoCTF 2014 were either accidental or a misunderstand-
ing of the competition rules. Participants we contacted
were therefore quite responsive and quick to remove the
offending flags. In more extreme cases, we used this in-
formation to lock the account of the team responsible for
the disclosure.

3.3 Synthesized Autogen Problems

Developing the cybersecurity skills associated with
capture-the-flag competitions requires practice. At any
given time, however, there are a limited number of compe-
titions running, most of which take down their challenges
once the competition is over. Further, once a player com-
pletes a given set of problems, there is generally little

advantage to playing through the competition again. The
limited availability of new challenges can make it difficult
to gain the practice necessary to improve one’s cyberse-
curity skills.

In the past few years, substantial work has gone into au-
tomated generation of practice problems for algebra [19],
word problems [15], and even formal logic [1]. Similarly,
we expect that APG can be used to generate CTF prob-
lems that help students practice security-related skills.
However, such autogen problems require more than just
flag or constant randomization to be useful for practice.

We have begun developing synthesized autogen chal-
lenges that change the underlying problem more substan-
tially. We have prototyped a generic reverse engineering
challenge where users must provide an input that satis-
fies sets of constraints of varying complexities, a return-
oriented programming challenge where students match
gadgets with their function, and a steganography prob-
lem where files are hidden in various types of images.
Since these problems are more complex, it is harder to
ensure that the different instances generated are of similar
difficulty (see Section 3.4). For this reason, we did not
include these challenges in PicoCTF 2014. Nevertheless,
in future competitions we plan to place a greater emphasis
on challenges that can be solved multiple times to gain
more practice with the relevant skill.

In our experience, it is easier to develop synthesized
autogen problems for novice players than it is for more ex-
perienced competitors. A good high-value CTF challenge
will typically feature something unique: a rare vulnerabil-
ity, a surprising combination of vulnerabilities that need
to be exploited in sequence, or a new twist on a classic
problem. In many of these cases, the challenge is discov-
ering the location of the weaknesses in the system and
the steps required to exploit those weaknesses. Problems
where the principal challenge is to discover the unique
twist are fundamentally difficult to duplicate for practice,
since the element of surprise feeds into the difficulty of
the problem.

PicoCTF problems, however, generally place a much
stronger emphasis on executing attacks, rather than on
discovering what exploits to use. The PicoCTF 2014
challenge Overflow 1, for example, explicitly tells the
player to perform a standard buffer overflow attack. While
such a problem would be trivial to an experienced player,
it poses a significant challenge to a student new to cy-
bersecurity. Learning how to use the debugger, how to
determine buffer lengths in binaries, and how to construct
functional exploits are all skills that require practice. For
problems like this where executing the attack is the chal-
lenge, we expect to be able to generate multiple problem
instances where each instance is of comparable difficulty
to the original problem. Thus, while synthesized autogen
problems may not add much replay or practice value to

competitions for advanced players, we expect it to have a
meaningful impact in a competition such as PicoCTF.

3.4 Challenges with Automating Problem
Development for CTFs

Automatically generated problems introduce a number of
new challenges, particularly for CTFs.

Consistent Difficulty While the primary goal of
PicoCTF is education, it is still ultimately a competition,
which means that fairness is critical. If each team receives
different problem instances, then there is a risk that some
problem instances will be significantly easier or harder
than others, giving some teams a competitive advantage.

We experienced such an issue with an autogen problem
in PicoCTF 2014. The ZOR challenge required students
to decrypt a message encrypted using a one byte XOR
scheme and a randomly selected key from a set of 256
possible values. We observed that for each instance of the
problem (of which 100 were generated), the ratio of in-
correct to correct submissions was roughly equivalent (on
the order of 10:1). For one instance, however, there were
more than twice as many correct solutions as incorrect
ones. This outlier instance had been created with the ran-
domly selected key “0”, causing the encrypted message
to be identical to the plaintext. Thus, for 1 in 100 teams,
solving the ZOR challenge was as simple as copying the
value of the flag from the message.

Fortunately, this was a low value problem and this issue
therefore had fairly little impact on the competition. It
does, however, highlight the importance of giving care-
ful consideration to consistent problem difficulty when
designing and testing autogen problems.

Bug Prevention In a traditional CTF competition, prob-
lems are relatively easy to test. One can walk through the
challenge pretending to be a competitor, then verify that
the uncovered flag is accepted for points. This style of
testing becomes much more difficult with autogen prob-
lems. Testing a large number of problem instances by
hand is generally not feasible. Yet, it may be the case
that a bug is present in only a handful of the problem
instances, such that testing a few example instances does
not detect the issue.

We had such a bug in the PicoCTF 2014 challenge
Internet Inspection. In order to allow for input and
formatting differences, most PicoCTF challenges strip out
extra spaces and formatting code from user submissions.
Figure 1 shows code from the Internet Inspection
problem used to remove spaces and <td> tags from user
input. The author of this code, however, misunderstood
the behavior of the Python strip function, which strips
off any individual characters provided in the input string.
Thus, any flag submission ending in a ’t’ or a ’d” would be
cut off prematurely. Since flags were generated at random,

def grade(autogen, key):
return flag == key.strip().strip('<td>"')
.strip('</td>"').lower ()

Figure 1: Buggy Grader for Internet Inspection

this issue affected approximately one in thirteen problem
instances.

In our testing before the competition, we solved several
instances of each problem, but did not run into this issue
due its relative rarity. Fortunately we were able to quickly
patch the problem once the issue was discovered about
30 minutes into the competition. Nevertheless, this sort
of issue suggests that manual testing alone is insufficient
for automatically generated challenges.

Scalability and Deployment Capture-the-flag compe-
titions are often run on a handful of small servers with
a limited budget, despite frequently having hundreds or
thousands of participants. This means that overhead and
scalability are particularly important considerations when
adding new features, such as autogen problems.

In our original prototype, problems were generated
on-demand. Whenever a player unlocked a new autogen
challenge, the server would immediately create a new
problem instance before returning the new list of chal-
lenges to the user. This worked well for simple challenges
and had the advantage that every team received a unique
instance. However, as the number of concurrent users
solving challenges increased and with more complex au-
togen problems that could not be created instantly, this
problem generation strategy quickly became a bottleneck.

Deployment of autogen problem also presents new chal-
lenges. Since different users receive different problem
instances, the actual problem content (messages, web
pages, program binaries, etc.) needs to be tied in some
way to user accounts such that teams only receive the
content for their particular problem instances.

3.5 Autogen Implementation in PicoCTF

Our implementation to support automatically generated
problems was primarily designed to be simple, scalable,
and general-purpose. Rather than generating problem
instances on demand, as in our prototype, we instead
create a pool with a fixed number of instances » in ad-
vance. This has the disadvantage that some teams will
receive the same problem instance, but this likelihood can
be tuned by changing the value of n. If two teams are
unlikely to receive the same challenge instance, then this
still achieves most of the benefits of having completely
unique instances.

By generating problem instances in advance rather than
on demand, we gain a number of performance and de-
ployment advantages. Whenever a new team starts the
competition or unlocks a new autogen problem, they are

assigned an instance number corresponding to one of the
existing problem instances in the pool. They then imme-
diately have access to the challenge and all of the relevant
content. If necessary, the number of problem instances
can always be expanded by simply increasing the size of
the instance pool. In addition, specific instances can be
revoked or teams can be remapped to new instances in
cases where flags for specific instances are disclosed.

When creating an autogen challenge, problem develop-
ers define two scripts: a generator and a grader. Given
an instance number and a random seed, the generator
produces the appropriate problem text and any necessary
resource files for that problem instance. Files produced
by the generator are automatically deployed by the web
server and served to the correct users based on the user’s
session information.

Graders are responsible for evaluating user submis-
sions to judge whether they are correct for a given prob-
lem instance. Most autogen problems in PicoCTF 2014
use deterministic flags based on a hash of the instance
number and a per-problem secret. That way, both the gen-
erator and grader have access to the value of the correct
flag without needing to read from either the database or
the file system.

Since our primary emphasis was on templated autogen
problems, we implemented a template system for intro-
ducing generated constants and flag values into existing
files, such as programs or web pages. In most cases, this
is as simple as performing a search and replace, swapping
out variables in the template file with the per-instance
value determined by the generator script. This templating
system works particularly well for problems with simple,
static deployment, such as basic cryptography, web-based
problems, and problems that provide users with down-
loadable files.

In contrast, problems that feature interactive, ex-
ploitable services are currently deployed by hand, as they
require more per-instance setup and are often served from
a different machine. For future competitions, we plan to
expand our autogen tools to better automate deployment
of these more challenging problem types.

All of our code used both for autogen problems and
to run the PicoCTF competition is open-source and can
be downloaded at https://github.com/picoCTF/
picoCTF-Platform-2.

4 Flag Sharing in PicoCTF 2014

By including numerous automatically generated chal-
lenges in PicoCTF 2014, we were able both to evaluate
our technique at scale and to gather data on the prevalence
of flag sharing in the competition. Students competing in
PicoCTF are encouraged to play on teams of up to five stu-
dents and to discuss the challenges with their teammates.
All members on the same team see the same problems,

and a correct submission from any team member counts
as a correct submission for the whole team. There is
no penalty or limit for incorrect solutions. While stu-
dents may look up information from outside sources, the
sharing of flags, the final solutions that are submitted for
points, is against the rules of the competition.

By analyzing submissions to automatically generated
problems, we were able to gain insight to how frequently
flags were shared across teams in the 2014 competition.
For the sake of our analysis, we say that flag sharing has
occurred if a team submits a flag for an autogen problem
that is incorrect for that team’s instance but would be
correct for some other team’s instance. For example, all of
the flags for the PicoCTF 2014 challenge Substitution
are the names of Disney songs. If a team receives a
problem instance for which the answer is “Let it Go”,
but submits the flag “A Whole New World”, a solution
to a different problem instance, then this is labeled flag
sharing. Note that we do not detect cases where teams
share a flag and also happen to have the same problem
instance.

Autogen Problems in PicoCTF 2014 PicoCTF 2014
featured 10 different templated autogen challenges. As
shown in Table 1, the problems ranged from extremely
simple (solved by nearly every team in the competition)
to far more challenging (solved by only 1% of participat-
ing teams). Over the course of the 12 day competition,
eligible players submitted a total of 127,412 flags to these
challenges, 16,604 of which were correct. We created
100 instances of each autogen problem, with instances
assigned to teams randomly. As discussed in Section 3.3,
PicoCTF 2014 did not contain any synthesized autogen
problems.

4.1 Flag Sharing Statistics

Among the 127,412 submitted flags, 1081 (0.84%) were
labeled as ““shared flags”. Removing multiple incorrect
attempts by the same team on a given problem yields 530
cases of a team attempting to submit an incorrect flag
that would be correct for a different problem instance.
Attempts were widely spread among teams, with 460 (out
of 3185) having at least one flag sharing attempt. Flag
sharing occurred across all score levels, though not among
any team that won prize money.

Interestingly, as shown in Table 1, the number of shared
flag cases varies dramatically across autogen problems
and is not obviously correlated with problem difficulty.
We suspect that the frequency of flag sharing reflects the
difficulty of sharing a given flag versus the benefit of not
having to solve a given challenge. Consider the problem
No Comment. To solve this simple challenge, players
must look through the source of a web page to find a hid-
den flag. The randomly generated flag is extremely long
(“flag_0d326ecce064e8153e743f1d927d3c15313f66ec”

https://github.com/picoCTF/picoCTF-Platform-2
https://github.com/picoCTF/picoCTF-Platform-2

Problem Name Category Score | Teams Solved | Shared Flag Cases | Eventual Success Rate
Tyrannosaurus Hex | Miscellaneous 10 3210 79 98.7%
No Comment Web 20 2952 3 100%
Caesar Cryptography 20 2684 7 85.7%
Internet Inspection Web 30 2704 17 82.4%
Javascrypt Web 40 1719 124 75.0%
Substitution Cryptography 50 1677 165 69.1%
ZOR Cryptography 50 554 36 38.9%
Basic ASM Reversing 60 887 43 58.1%
Repeated XOR Cryptography 70 182 56 25.0%

Block Cryptography 130 35 0 -

Table 1: Automatically Generated Problems in PicoCTF 2014

in one instance), making it nearly impossible to share
verbally with another team. Since the problem itself is
relatively easy and sharing the flag is difficult, it is not
surprising that only three flag sharing attempts were
detected for this problem.

On the other hand, the challenge Substitution re-
quires students to solve a substitution cipher to uncover
the lyrics of a Disney song, the name of which serves
as the flag for the problem. In this case, the problem
is more challenging, and sharing the value of the flag
is trivial. It may even be possible to overhear another
team discussing the problem and infer the value of the
flag without the cooperation of the other team. When
the song title is revealed by decrypting the message, it
contains no spaces (“letitgo”, for example), and thus most
students (88.5%) submit the song title with no spaces. In
flag sharing cases, however, submissions were four times
more likely to initially contain the song title with spaces
(“let it go”), suggesting the solutions were often shared
via word of mouth.

4.2 Sources of Shared Flags

In order to better understand how shared flags were be-
ing used in the competition, we attempted to manually
determine the origin of the shared flag for each of the 530
cases of flag sharing. We ultimately observed that most
instances (75%) could be classified as either an attempt to
submit a publicly disclosed flag or an attempt to submit
a solution that worked for a different team at the same
school. We were unable to determine the source of the
copied flag in the remaining 25% of cases.

Disclosed Flags Given the length and scale of the
PicoCTF, it was difficult to ensure that flags were not
leaked before the end of the competition. By looking
at submissions to autogen problems, however, we were
able to determine both when a leak had occurred and
how much of an impact it was having on the competition.
Since autogen problems are randomly assigned to teams,
we observed that the number of submissions (both correct
and incorrect) was similar for different instances. Cases

Submissions of "flag_2238" for Problem "Javascrypt"
120

-
o
S

80

60

40

Number of Submissions

20

0
10/27 10/29 10/31
Correct Submissions (Cumulative)

11/2 11/4 11/6 11/8

Incorrect Submissions (Cumulative)

Figure 2: Submission Patterns Before and After a Flag
Disclosure

of shared flag submissions were also distributed fairly
evenly among instances, in terms of which instance was
the source of the original flag. If, however, a large num-
ber of submissions labeled as attempts to use a shared
flag all used a flag from one instance, this almost always
indicated that a public flag disclosure had occurred.

On November 1 (five days into the competition), one
player began posting videos of his solutions to some of
the lower-valued challenges on YouTube. Among these
solutions was the flag “flag_2238” for the Javascrypt
problem. As shown in Figure 2, the frequency of both
correct and incorrect submissions of the flag “flag_2238”
followed a fairly clear pattern until November 1, at which
point the number of attempts to use “flag_2238” on the
wrong instance skyrocketed.

The other major flag disclosure we were able to detect
with autogen problems was for the problem Repeated
XOR. Several days into the competition, a student asked
for assistance solving the problem on the question-answer
forum Stack Overflow. Several other users replied, even-
tually posting the decrypted message and corresponding
flag. Of the 56 cases where shared flags were submitted
for Repeated XOR, 47 were attempts to submit this flag.
Only 13% of teams who submitted this flag were able to

eventually solve the challenge themselves before the end
of the competition.

Collaboration Between School Teams Flag sharing
among teams from the same school accounted for 71% of
the cases for which we were able to identify a likely flag
source. We classified an invalid autogen submission as
a shared flag from the same school if the same flag was
accepted earlier (or up to ten minutes later) as a correct
answer by a different team from the same school.

Unlike with publicly disclosed flags, which were sub-
mitted at arbitrary times after the disclosure, there were
clear patterns in the timing of shared flag submissions
among teams from the same school. As detailed in Ta-
ble 2, a third of all shared flags were submitted within 20
minutes of the original, with 13% of submissions occur-
ring within the same minute. Another third of the flags
were submitted fairly evenly throughout a one day pe-
riod and a final third were spread out over the rest of the
competition.

This submission pattern suggests that flag sharing be-
tween students from the school took several different
forms. Both from submission patterns and from discus-
sions with teachers, we know that many classrooms play
through PicoCTF as a classroom activity, with multiple
teams from the same school competing at the same time.
It is therefore not surprising to see that in some cases
teams in close proximity shared solutions, especially if
the teams were playing for more for fun than for the sake
of competition.

Cases where students submitted shared flags signifi-
cantly later than the original are harder to reason about
with solution data alone. It may be the that students
discussed problems with other teams after being stuck
on a problem for a significant amount of time. From
discussions with teachers, we know that some cases of
non-immediate flag sharing occurred because of overlap
between team members. In one situation, groups of stu-
dents played PicoCTF 2014 as part of a classroom activity.
Then, once class was over, a subset of the most interested
students formed a new team to keep playing after school.
In this case, the instances of flag sharing were actually
students attempting to reuse flags they themselves had
obtained on different teams.

4.3 Discussion

The prevalence of flag sharing in PicoCTF highlights
the difficulty of preventing flag sharing in an extended,
online-only competition. There is still good reason to be
optimistic about the integrity of the competition, however.
Despite the large number of teams that shared flags, the
number of actual attempts to submit copied flags was rel-
atively small. Increasing the number of autogen problems
should further reduce the effectiveness of flag sharing.
We were surprised to see that, in addition to low-

scoring teams, high-scoring teams also shared flags. We
had originally thought that competitive players would not
share flags, as anyone sharing flags would likely be un-
able to reach the higher levels of play through problem
unlocking. In PicoCTF 2014, we did not award prize
money to any teams that shared flags, however we did
allow teams suspected of flag sharing to remain on the
scoreboard. For future PicoCTF competitions, we plan
to make our policy about shared flags more explicit and
then treat cases of shared flag submissions among higher
scoring teams far more seriously.

Many of the factors we found to be associated with flag
sharing are relatively unique to PicoCTF. The length of
PicoCTF (12 days) made limiting online flag disclosures
especially challenging. In addition, the fact that multiple
teams frequently came from the same school seemed to
encourage these teams to share flags. Finally, since most
PicoCTF competitors are novices (70% cited no “hacking”
experience in our 2013 survey [5]), we suspect some may
not take flag sharing as seriously as more experienced
players or may be less familiar with proper CTF etiquette.
Thus, while competitions similar to PicoCTF may experi-
ence the same sorts of flag sharing behavior, we suspect
that flag sharing in other competitions is concentrated
among fewer teams.

5 Related Work

The idea of giving different tests to different students has
long been a technique to prevent cheating for in-person
multiple choice tests [4, 8—11]. While different test ver-
sions are traditionally generated by permuting the order
of problems and possible answers for each question, there
have been instances where test-givers have used small
problem differences to detect cases where students are
collaborating [4]. These techniques have largely been
successful both in preventing and deterring cheating on
multiple-choice tests [6, 11].

With the growth of online education, and in par-
ticular massive open online courses (MOOCs), there
have recently been efforts to develop cheating preven-
tion techniques for online tests. Many of the meth-
ods that have been proposed rely similar randomization
strategies similar to those used with paper-and-pencil
tests [2, 7, 14, 16, 18]. Tools for supplementing in-person
classes with digital evaluations, such as learning man-
agement systems (LMSs), often offer support for either
problem-level or test-level randomization [18].

Khan Academy features a problem framework called
khan-exercises [12] that allows problem writers to create
autogen problems based on templates. These templates
have similar format to templates we used for PicoCTF
problems, however while the primary goal of templated
autogen problems in PicoCTF is to detect and prevent
cheating, Khan Exercises focuses more on generating

Time Between Submissions | Number of Cases | Cumulative Percentage
<10 Minutes After 74 33%
<1 Hour 18 41%
<1 Day 67 70%
<2 Days 18 78%
Rest of Competition 49 100%

Table 2: Time Between Original Flag Submission and Shared Flag Submission for Teams from the Same School

large numbers of practice problems.

Within the CTF community, generating custom prob-
lem instances has not yet taken off. Besides PicoCTF,
we are only aware of several challenges in the Embedded
Security CTF [13] that are automatically generated.

Finally, while autogen challenges in PicoCTF require
a fairly detailed specification of how to generate prob-
lem instances, recent work has gone into more advanced
types of problem synthesis, where new questions can
be generated based on examples or a desired difficulty
level [1, 3, 15, 17, 19].

6 Conclusion

Automated problem generation has great potential to im-
prove both the effectiveness and integrity of computer
security competitions. With basic forms of APG, we were
able to prevent numerous cases of flag sharing and gain a
better understanding of inter-team collaboration over the
course of the competition. Generating problem instances
automatically in a competitive setting also comes with
new challenges, particularly with regards to scalability,
deployment, and competition fairness. In future PicoCTF
competitions, we plan to expand our APG efforts, both by
increasing the percentage of problems generated automat-
ically and by experimenting with methods to improve the
replay value of generated challenges.

Acknowledgments We would like to thank Roberto
Valle, Maxime Serrano, and Collin Petty for their work
developing autogen tools and problems. We would also
like to thank each of our sponsors for making PicoCTF
possible: Trend Micro, Boeing, Qualcomm, the Entertain-
ment Technology Center, CloudShark, and the National
Security Agency. This material is based upon work sup-
ported by the National Science Foundation under Grant
No. 1419362 and by a Graduate Research Fellowship
under Grant No. 0946825.

References

[1] AHMED, U. Z., GULWANI, S., AND KARKARE, A. Automati-
cally Generating Problems and Solutions for Natural Deduction.
In International Joint Conference on Artificial Intelligence (2013).

[2] ANDERMAN, E. M., AND MURDOCK, T. B. Psychology of
Academic Cheating. Elsevier Academic Press, 2007.

[3] ANDERSEN, E., GULWANI, S., AND POPOVIC, Z. A Trace-based
Framework for Analyzing and Synthesizing Educational Progres-
sions. SIGCHI Conference on Human Factors in Computing
Systems (2013), 773-782.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[4] ANDERSON, W. A. Cheating Control on Exams. Journal of
Agronomic Education 10 (1981).

[5] CHAPMAN, P., BURKET, J., AND BRUMLEY, D. PicoCTF : A

Game-Based Computer Security Competition for High School Stu-

dents. In USENIX Summit on Gaming, Games, and Gamification

in Security Education (2014).

[6] CIZEK, G.J. Cheating on Tests: How To Do It, Detect It, and

Prevent It. Lawrence Erlbaum Associates, Inc., Mahwah, New

Jersey, 1999.

[71 CLUSKEY, G. R., EHLEN, C. R., AND RAIBORN, M. H. Thwart-

ing Online Exam Cheating Without Proctor Supervision. Journal

of Academic and Business Ethics 4 (2011).

[8] CooOK, L. L., AND EIGNOR, D. R. An NCME Instructional

Module on IRT Equating Methods. ITEMS e Instructional Topics

in Educational Measurement, 1984 (1991), 37-45.

[9] HARPP, D. N., AND HOGAN, J. J. Crime in the Classroom:

Detection and Prevention of Cheating on Multiple-Choice Exams.

Journal of Chemical Education 70 (1993), 306.

HOUSTON, J. P. Alternate Test Forms as a Means of Reducing
Multiple-Choice Answer Copying in the Classroom. Journal of
Educational Psychology 75, 4 (1983), 572-575.

KERKVLIET, J., AND SIGMUND, C. L. Can We Control Cheating
in the Classroom? The Journal of Economic Education 30, 4
(1999), 331-343.

KHAN ACADEMY. The Khan Academy’s Exercise Framework.
http://khan-exercises.readthedocs.org/, 2011.

MATASANO SECURITY AND SQUARE, INC. Embedded Security
CTF. https://microcorruption.com, 2014.

MEYER, J., AND ZHU, S. Fair and Equitable Measurement of
Student Learning in MOOCs: An Introduction to Item Response
Theory, Scale Linking, and Score Equating. Research & Practice
in Assessment 8 (2013), 26-39.

PoLozov, O., O’ROURKE, E., SMITH, A. M., ZETTLEMOYER,
L., GULWANI, S., AND POPOVIC, Z. Personalized Mathematical
Word Problem Generation. International Joint Conference on
Artificial Intelligence (2015).

ROWE, N. C. Cheating in Online Student Assessment : Beyond
Plagiarism. Online Journal of Distance Learning Administration
7 (2004).

SADIGH, D., SESHIA, S., AND GUPTA, M. Automating Exercise
Generation: A Step Towards Meeting the MOOC Challenge for
Embedded Systems. Proceedings of the Workshop on Embedded
and Cyber-Physical Systems Education (2012).

SEWELL, J. P., FrRITH, K. H., AND COLVIN, M. M. Online
Assessment Strategies : A Primer. MERLOT Journal of Online
Learning and Teaching 6, 1 (2010), 297-305.

SINGH, R., GULWANI, S., AND RAJAMANI, S. Automatically
Generating Algebra Problems. AAAI Conference on Artificial
Intelligence (2012), 1620-1627.

http://khan-exercises.readthedocs.org/
https://microcorruption.com

	Introduction
	Background: PicoCTF
	Automatic Problem Generation
	Example Autogen Problem
	Templated Autogen Problems
	Synthesized Autogen Problems
	Challenges with Automating Problem Development for CTFs
	Autogen Implementation in PicoCTF

	Flag Sharing in PicoCTF 2014
	Flag Sharing Statistics
	Sources of Shared Flags
	Discussion

	Related Work
	Conclusion

