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“Jeopardy-Style” Capture-the-Flag
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Example CTF Problem

You find an encrypted message written on the
documents. Can you decrypt it?

“rfc qcapcr nygqnfpyqc gq
bmuasiugssaxxlextkasoklntcidhm”
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“the secret passphrase is

dowcukwiuuczzngzvmcugmnpvekijo”




Flag Sharing

Flag:
“sql_injection_rox”




Flag Sharing

Flag:
“sql_injection_rox”
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Changing Problems Automatically

“the secret passphrase is
dowcukwiuuczzngzvmcugmnpvekfjo”

k=24 I “rfc qcapcr nyqqnfpyqc gq
bmuasiugssaxxlextkasokintcidhm’

)

“the secret passphrase is
vrsoblzffauncgrgknleuxedsknnhb”

k=24 I ’ “rfc qcapcr nyqqnfpyqc gq
tpgmzjxddyslaepeiljcsvcbqillfz”



Changing Problems Automatically

“the secret passphrase is
dowcukwiuuczzngzvmcugmnpvekijo”

k=24 I “rfc gcapcr nyqgnfpyqc gq
bmuasiugssaxxlextkasokintcidhm’

)

“the secret passphrase is
dowcukwiuuczzngzvmcugmnpvekijo”

k=6 I “znk ykixkz vgyyvnxgyk oy
juciagcoaaifftmfbsiawstvbkqglpu”

These different versions can be generated automatically!



Automatic Problem Generation

Through Automatic Problem Generation,
different competitors can receive different
versions (“autogen” problem instances) of
a given problem.

“wkh vhfuhw sdvvskudvh Iv Flag:
yuvreociidxqfjujngohxahgvnqgke” “vrsoblzffauncgrgknleux...”
Flags can’t be
shared!
“rfc qcapcr nyqqnfpyqc gq Flag:

bmuasiugssaxxlextkasokintcidhm” “dowcukwiuuczzngzvmc...”
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Templated Autogen Problems

“What is the value of {register} after executing the
instruction at address {memory address}?”

/ N\

“What is the value of eax after “What is the value of ebx after
executing the instruction at executing the instruction at
address 0x12345678?” address 0x20202020?”

Problem instances are essentially the same,
but have slightly different details.

4

Good for detection and prevention of flag sharing
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Flag:
“vrsoblzffauncgrgknleux...”

Correct Flag:
“vrsoblzff...”

Flag:

“vrsoblzffauncgrgknleux...”
Flag
Sharing!

We detect flag sharing by looking for cases where users

Correct Flag:
“dowcukwiu...”

submit incorrect flags that are correct for an instance other
than their own
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“vrsoblzff..”

freeflags.com

. “The correct flag for this problem is
- vrsoblzffauncgrgknleux...”
Bob
Correct Flag:
“dowcukwiu...”

Distinct, per instance flags allows competition to detect the

source of shared flags

12



Challenges

e Balanced Difficulty
* Bug Prevention
e Scalability and Deployment
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Balanced Problem Difficulty

“the secret passphrase is
dowcukwiuuczzngzvmcugmnpvekijo”

k=0 “the secret passphrase is
dowcukwiuuczzngzvmcugmnpvektjo”

Need to make sure each problem instance is reasonably close

to the same difficulty.
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Scalability and Deployment

e Each team must be given a team-specific
problem instance

e Problem instance generation must not
bottleneck the performance of the
competition

e For problems served from remote machines,
instances must be deployed to those
machines and synchronized with the
grading server

15



Automatic Problem Generation
in picoCTF 2014
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picoCTF 2014

e 3,185 Eligible Teams

e 9,738 Eligible Students
e 12 Day Competition

e 66 Security Challenges

e Cash Prizes for Top 10
Teams

picactf 2014

hachking compaetition
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Automatically Generated Problems in
picoCTF 2014

Tyrannosaurus Hex  Miscellaneous 3185
No Comment Web 20 2952
Caesar Cryptography 20 2648
Internet Inspection = Web 30 2704
Javascrypt Web 40 1719
Substitution Cryptography 50 1677
ZOR Cryptography 50 554
Basic ASM Reversing 60 887
Repeated XOR Cryptography 70 182

Block Cryptography 130 35



Flag Sharing in picoCTF 2014

127,412 flags (correct and incorrect) submitted to
automatically generated problems

1,081 (0.84%) labeled as “shared flags”
530 distinct flag sharing cases
14% (460/3185) of teams involved

87% of these teams shared flags for only one
problem

68% teams attempting to submit a shared flag
eventually solved the problem correctly

19



Likely Source of Shared Flag
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Likely Source of Shared Flag

Unknown, 126,
25%
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Stack Overflow,
47,10%

Youtube, 47,
10%

Likely Source of Shared Flag

Other Online
Disclosure, 12, 2%

Unknown, 126,
25%
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Number of Submissions

Submissions of "flag 2238" for Problem "Javascrypt”

120

100

80

60

40

-

10/27  10/29  10/31

—Correct Submissions (Cumulative)

11/2 11/4 11/6 11/8

—Incorrect Submissions (Cumulative)
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T hours ago

Hey can you the javascrypt - 40, basic asm 60, common vulnerablity exercise -20, 7 Unless anyone already know the
answer? if u do please comment asap. and please can you do it!
Reply -

Hide replies A

. 4 hours ago
picoctf 2014 challenge javascrypt 40

Reply - 1§

. 4 hours ago
commom 20 so easy ,so0 i don't make video

Reply -

4 hours ago
flag_2238 doesnt work for me.
Reply -

. 3 hours ago
u sould do as that video

Reply -



Stack Overflow,
47,10%

Youtube, 47,
10%

Likely Source of Shared Flag

Other Online
Disclosure, 12, 2%

Unknown, 126,
25%
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Likely Source of Shared Flag

Other Online
Disclosure, 12, 2%

Stack Overflow, Unknown, 126,
47,10% 25%
Youtube, 47,
10%
Submitted by

Another Team at
School (Earlier),
264,53%
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Future of Automatic Problem
Generation in CTFs
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Automatically Generating Problems and Solutions for Natural Deduction

Unmiair Z. Ahmed
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Abstract

Natural deduction, which is a method for establish-
ing validity of propositional type arguments, helps
develop important reasoning skills and is thus a
ey ingredient in a course on inroductory logic.
We present two core components, namely solution
generation and practice problem generation. for en-
abling computer-aided cducation for this important
subject domain. The key enabling technology is use
of an offfine-computed data-structure called Uni-
versal Proaf Graph {UPG) that encodes @il possi-

Sumit Gulwani
MSR Redmond
sumitg @ microsoft.com

Amey Karkare
NIT Kanpur
karkare®@ cse.ditk.ac.in

against the prejudiced and uncivilized atides that threaten
the foundations of our democratic society [Hurley, 2011].

From o pedagogical perspective, natural dedustion is a use-
ful wol in relieving mash anviery that terrifies countless sto-
dents, Iis a gunllc ntroduction te mastering the use of logical
symhbals, which solher more difficult felds
alyebra, peom ry. physics, and economics,

Natural deduction is typically taught as part of an introduc-
tory course on logic, which is 1 central component of college
education and is generally offered w swdents from all di
plines regardloss of their major. It is thus nod a surprise that
a course on Ingic is heing offered on various online educa-

A Trace-based Framework for Analyzing and Synthesizing
Educational Progressions
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A key challenge in teaching a procedural skill is finding an ef-

fective progression of example problems that the leamer can
solve i in order to imernalize the pmccdunc In many learning
dom . generation of such problems is typically done by
hand and there are few ols to help automate this process,
We mluoe this effort by borrowing ideas from test input gen-
cration in software engineering. We show how we can use
execution traces as a framework for abstracting the character-
istics of a given procedure and defining a partial ordering that
reflects the relative difficulty of two traces. We also show how
we can use this framework to analyze the completencss of
expert-designed progressions and fill in holes. Furthermore,
we how our f can syn-
thesize new problems by generating large sets of problems for
clementary and middle school mathematics and synthesizing
hundreds of levels for a popular algebra-learning game. We
present the results of a user study with this game confirming
that our partial ordering can predict user evaluation of proce-
dural difficulty better than baseline methods,

Author Keywords
education; problem generation; execution traces; games

ACM Classification Keywords
H.5.0 Information interfaces and presentation; General

INTRODUCTION

One of the most important domains of human learning is pro-
cedural task learning, which spans a wide range of human ac-
tivities, Humans leam to execute procedures that range from
a simple list of actions, such as a cooking recipe, o more
complex procedures involving loaps and conditionals, such
as prime factorization, long division, and solving systems of
equations. The standard human practice of learning such pro-
cedures is by solving a sequence of training problems.
sequence of problems allows a learner to develop an inter-
nal model of the procedural algonithm over time. so that ul-
timately it can be applied correctly to all possible inputs for
thal procedure

Peanission o make digital or hard copees of all o pant of this work for
pers se s granted witboul fee provided that copes are
vt made or distributed for profit or commercial advantage and thal capies
b this potice and the full citation on the firs poge. To copy crherwise, o
republish, 10 post an scrvers ar o redisiribute 0 lists, seuires prior spesific
permission andior a fee.

CHI 200 3. April 27-May 2. 2013, Paris. France.

Copyright 2013 ACM 978-1-4503- 1899001 304, $15.00,
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mond.,
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Procedural learmning ha\ bocn studied in HCI as part of soft-
ware learna 6] signs evaluate
applica y USE can suc-
cessfully execute a target pmcedure
rescarchers frequently wish to
a user interface design facilitates \he learning of such proce-
dures,

A fundamental problem of teaching procedural tasks in both
HCT and education is determining the optimal sequence of
Textbaoks for

require a few st ind grow to more complex multi-
step problems that vary based on the input. These progres-
sions often vary widely and many of them are likely subop-
timal. The quality of a traini
factors, such as the structure of the target procedure, cogni-
tive processes that lead 1o the creation of procedural models
in the mind, level of engagement rowards the sk, learner
background, and learning preferences.

There are a number of guiding principles for learning pro-
gressions. Reigeluth and Stein’s Elaboration Theory [24] ar-
gues that the simplest version of a task should be taught first,
followed by progressively more complex tasks that elaborate
on the original task. Csikszentmihalyi’s theory of flow [7]
\ugge\l\ that we can keep the learner in a state of maximal
ment by continually increasing difficulty 0 match the
Icﬂmm s increasing skill. By considering Vygotsky's zone
of proximal development [33], we can avoid overloading the
Tearner by introducing so many concepts at the same time that
the leamer cannol create a consistent inlernal representation.
Nevertheless, many important details of optimal progression
design are not covered by general principles. It has been es-
timated that 2001-300 hours of expert development are neces-
sary o produce one hour of content for intelligent wiors [2],
of which problem ordering is a key part

In this paper, we create a framework for reasoning about the
space of possible progressions as defined by the procedural
task itsell. Our goal i (o create a representation of the space
of p using only a of the

procedure, defined directly as o computer program. We pro-
pose categorizing a procedural task based on features of the
program (race obtained by executing the procedure on that
task. We show how this trace-based measure can be used w
measure the quality of a progression and compare the relative
difficulty of two problems.

Automating Exercise Generation: A Step towards Meeting
the MOOC Challenge for Embedded Systems
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Automatically Generating Algebra Problems
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Abstract providing a fixed set of exercises does not provide sufficient

Wi peopose computer-assisted techniques for helping
with pedagogy in Algebra In particular, given a proof

personalization for a student who i trying to learn a particu-
lar concept. We desire (0 automatically generate fresh prob-
Jeans hal g “similar” 10 a given problem, where the user
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Personalized Mathematical Word Problem Generation
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Abstract

Word problems are an established technique for
teaching mathematical modeling skills in K-12 ed-
ucation. However, many students find word prob-
lems unconnected 1o their lives, artificial, and un-
interesting. Most students find them much more
difficult than the mn—e»pomimu symbolic represen-
tations. To

pedagog
progression of unique word problems that form a
personalized plot.

We propose a novel technique for automatic gen-
eration of personalized word problems. In our
system, word problems are generated from gen-
eral specifications using answer-set programming
(ASP). The specifications include tulor require-
ments {properties nr 4 mathematical model), and
student requirements (personalization, characlers,
setting}, Qur system takes a logical encoding of the
specification, synthesizes @ word problem narrative
and its mathematical model as a labeled logical plot
graph, and realizes the problem in natural language.
Human judges found our problems as solvable as
the textbook problems, with a slightly more artifi-
cial language,

1 Introduction

Word problems are notorieusly difficult for children and
adults alike [Verschaffel. 1994], This phenomenon is not al-
ways related to mathematical understanding: in fact, many
people find word problems much more difficult than the cor-
responding symbolic representations. Children have been re-
ported to perform up to 30% worse on word problems than on
corresponding algebraic equations [Carpenter et al., 19801,
Multiple studies have conjectured that this is caused by lan-
cuage understanding, conceptual knowledge, discourse co
prehension, and ather aspects required o build a mental
representation of a word problem [Cummins et al.. 1988;
Schumacher and Fuchs, 2012]

Mareover, many students find word problems artificial and
irrelevant (o their lives [Ensign. 1996]. This perception is
known to be altered by introducing individual interest in a

comtext of a word problem [Renninger er al., 2002). Many re-
searchers have found that per.mmlmng word problems rai
understanding and engagement in a problem solving pro-
cess, which, in tum, increases children's performance [Davis-
Dorscy er al, 1991; Han, 1996]. However, personalizing a
progression of word problems is impractical in a textbook.,
and would place unreasonable burden on teachers, who would
need 1o maintain awareness of each student’s interests,

According to obscrvations above, an ideal pedagogy might

involve an individually crafted progression of uj
problems. that form a personalized plot. Educational scaf-
folding of such a progression should be able to vary mul-
tiple aspects of a word problem individually. Such aspects
should include but are not limited to: concepts of a mathemat-
ical model, plot complexity, discourse structure, and language
richness, Moreover, pmblem personalization should rely on
the students” own preferences, and ideally should generate
waord problems according to their

In this work, we pr:mu a system for automatic person-

alized word problem generation from general specifications.
In our system. word problem generation is defined as a con-
strained synthesis of labeled logical graphs that represent ab-
stract plots, The constraints are given by a witor and a studes
independently as a set of mathematical and narrative require-
ments. Our system has the following properties:

* Itis auramaric: a mathematical model, a plot, and a dis-
course of a jem are generated automatically
from general specifications,

+ It is personalized: students can set preferences for a
problem’s setting, characters, and their relationships,

« Ttis sensible: we enforce coherence in a synthesized plot

ing a novel technique called discourse tropes

= Itis fit for scaffolding: varying requirements to different
Tayers of a word problem enables a wtor to scaffold a
unique educational progression.

Synthesis of logical graphs is implemented with ansier-ser

(ASP), a logic paradigm, well-
suited for exploration of a huge space of possible models un-
der declarative constraints [Gebser er al., 20121, The techni-
cal novelty of this approach lies in (a) application of ASP 10
a novel domain, and (b) using a relatively underexplored set-
wration technigue [Eiter et al, 2009] o salve the universally
quantified problem of graph generation with discourse tropes.

orks with the system 1o fine-tune the notion

been two approaches 10 generating similar
Ine approach, flexibility is provided for instan-
ters of a problem with random constants (Ju-
However, this flexibility is given only for con-
bicr approach, certain features of the problem
fovided as hard-coded options and users are
among these options and generate problems.
s the domain of quadratic equations. some in-
Jres could be whether the equation is “simple
ficult factorable, where the leading «.wﬁ'r
or “requires use of general quadratic for-
+ interesting feature can be whether or not it
solutions. Several math worksheet generator
ased on this approach. The Microsoft Math-
bnerator goes a step ahead and automatically
tures from a problem instance (Microsoft by,
is limited to simpler algebraic domains such
k- linear and quadratic equation solving. Also,
s its own set of features that needs to be pro-
rately.
. we present a methodology that works for a
provf problems (hereby, simply referred 1o
for brevity) that involve establishing the va-
2 algebraic identity. Our methodology offers
15 over above-mentioned existing approaches.
hodology is fairly general and is applicable to
1ds of Algebra such as Multivariate Polynomi-
friry. Summations over Series applications of
rem. Calculus (Limits, Integration and Differ-
trices and Determinants, etc. Second, we are
k- the user and interactively fine-tune the no-
brity” accanding 1o the tastés and needs of the

ology warks in 3 steps:
eration: Given a problem p, abstract p w o
hic query ¢ implicitly specifies a set of prob-
L by [[2]] where p € [[2] by default

ution: Automatically executing a query @ 1o

29



Synthesized Autogen Problems

void check_input(int v0, int v1) {

v0 +=7;
intv2 =0;
v0 *=v2; void check_input(int v0, int v1) {
vl +=2; intv2 =vl;
if(v0 < 45) { int v3 =v0;
int v3 =vO0; if(vl>29){
v2 -=v3; v0 *=v1;
} }
vl *=8; if(v0 !=-8930) {
intv4 = 3; you_lose();
v4 *=v1; return;
if(v0 !=0) { }
you_lose(); if(v21=94) {
return; you_lose();
} return;
if(v2!=0){ }
you_lose(); if(v3!1=-95) {
return; you_lose();
} return;
if(v4 1= -456) { }
you_lose(); get_key();
return; return;
} }
get_key();
return; . -
) Similar

Difficulty

void check_input(int v0, int v1, int v2, int v3, int v4, int v5, int v6) {

intv7 =-1;
v3-=3;
v6 -=1;
for(int v8=1; v8<=9; v8+=v1) {
v5 +=v8;
v2 *=v6;
}
intvo = 6;
intvl0=0;
if(v2 <=v9){
v5 *=v4;
v0 +=v3;
}
else {
v3 |=V6;
}
intvll =vé6;
vll +=v10;
for(int v12=1; v12< 10; v12+=v5) {
intvl3=v7;
v6 *=v0;
if(v5 ==44) {
vl3 -=v2;
v11 *=v10;
}
else {
v13 *=v11;

30



Synthesized Autogen Problems
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Questions?

o This repository Searc Pull requests Issues Gist

picoCTF / picoCTF-Platform-2 @ Unwatch» 17  srUnstar 25 Y Fork 16

A genericized version of picoCTF 2014 that can be easily adapted to host CTF or programming competitions.

<> Code
1,154 commits 5 branches 0 releases 9 contributors
@ Issues e
Branch master~ ~ picoC TF-Platform-2 / + =
Il Pull requests B
Merge pull request #43 from coreymason/recaptcha-fix
_9 cganas authored 25 days ago latest commit cfd7@37783 B #- Pulse
B api Fixes #41 and Updates Google reCAPTCHA to V2 26 days ago {1 Graphs
i config Closes #33 Added ProxyFix and additional forwarded headers & months ago
M example_problems Added autogenerated problem example 6 months ago HTTPS clone URL

https://github.com/picoCTF /picoCTF-Platform-2
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