
GuardRails: A (Nearly) Painless Solution to Insecure Web Applications

Jonathan Burket, Patrick Mutchler, Michael Weaver, Muzzammil Zaveri, David Evans

University of Virginia

Annotated Ruby
on Rails Code

GuardRails
Secure Ruby on

Rails Code

GuardRails is a source-to-source tool that uses annotations to produce

secure Ruby on Rails applications with minimal effort from the developer.

Modern web applications run in a universally privileged mode with unlimited access to potentially

private data. To prevent security flaws, developers need to include checking code throughout the

application to ensure the data policies are satisfied, often in an ad-hoc and haphazard fashion. This

makes code difficult to read and security bugs easy to insert.

Problem Solution
Instead of relying on the programmer to explicitly insert all the correct access control checks in the code,

we let the data protect itself from the application by knowing its own security policies. We propose

GuardRails, a source-to-source tool that transforms code annotated with high level data policies into a

secure Ruby on Rails application. To use GuardRails, a developer simply writes typical Ruby on Rails

code and adds annotations that describe data policies ranging from access permissions to sanitization

routines.

Sanitization

tags = %w(a acronym b strong i em li ul ol h1 h2 h3 h4 h5 h6
 blockquote br cite sub sup ins p)
user_input = sanitize(user_input, :tags => tags, ...)
send(user_input)

The above example taken from guide.rubyonrails.org describing countermeasures to security flaws.

Without the proper sanitization routines, a malicious user can cause an application to execute
arbitrary code and compromise security. Even one poorly sanitized field can lead to a total
compromise of the system.

This work is supported by the Air Force Office of Scientific Research through a MURI award

SQL injection and Cross-Site Scripting are common security attacks that take advantage of
unsanitized or poorly sanitized user input being saved to a database or rendered by a browser. In
order to protect against these attacks, developers have to manually add sanitization calls. This
makes it easy for a developer to forget to sanitize, sanitize incorrectly, or assume that data has
been sanitized elsewhere.

Security Typing
Data is wrapped with security types to protect its integrity throughout the application

Authorization Logic

By having data objects control their own access policies, we can be sure that an object is not being
accessed from an improper setting. The object places the authorization logic between itself and any
function accessing it by intercepting the getters and setters as well as a few other access vectors.

Developers can specify access policies by annotating model files with a simple policy specification
language. From this specification, GuardRails produces the necessary model code to implement the
policies. This model ensures that developers no longer have to write convoluted and error prone access
control statements all over an application. In addition, the system has an added benefit of making
authorization policies easy to find, read, and comprehend.

The policy language used by GuardRails includes keywords to let developers easily specify common
policies, but also has a robust system for including arbitrary ruby code. This ensures that almost any
access check can be implemented using GuardRails, no matter how complex.

Rules for accessing data are linked directly to the data objects themselves

GuardRails also attaches sanitization policies to strings themselves. Strings derived from user input or
other potentially malicious sources are marked as tainted and are assigned rules as to how they should
be sanitized or displayed in different contexts. These rules are then automatically enforced in places
where injection attacks might occur, such as in SQL Queries or HTML output.

While GuardRails automatically protects strings with a set of default policies, these rules can easily be
expanded to include a wide range of custom behavior. Developers can use annotations to specify
different sanitization policies for different fields (See Examples). These policies may rely on custom
sanitization routines and can be set to behave differently based on the context of where the string
appears.

By attaching taint policies to strings themselves, many classes of injection attacks, including SQL
injection and cross-site scripting, can be prevented without the need to write large amounts of
sanitization code throughout the application.

String

Untrusted HTML-SAFE

Trusted HTML-Sanitized

SQL-Sanitized

verify :method => :post, :only => [:transfer],
:redirect_to => {:action => :list}

xss_terminate :sanitize => [:title], :html5lib_sanitize =>
[:body]

Instead of writing specific security code in the Controller classes

@(:sanitize => title, :html5lib_sanitize => body)
Class Comment

@(:transfer_method => :post)
Class User

Security annotations are attached directly to the data model

Authorization Logic Expressive Taint Tracking
Rules for accessing data are linked directly to the data objects themselves

By associating data policies directly with data models, we can insert checking code to ensure that an object is not being accessed
from an improper setting. The object places the authorization logic between itself and any function accessing it by intercepting the
getters and setters as well as all other access vectors.

Developers can specify access policies by annotating model files with a simple policy specification language. From this
specification, GuardRails produces the necessary checking code to implement the policies. This approach ensures that developers
no longer have to write convoluted and error prone access control statements all over an application. In addition, the system has
an added benefit of making authorization policies easy to find, read, and comprehend.

The policy language used by GuardRails includes keywords to let developers easily specify common policies, but also has a
extensive system for including arbitrary ruby code. This ensures that almost any access check can be implemented using
GuardRails, no matter how complex.

Sanitization policies are combined with taint tracking to prevent injection attacks
GuardRails also attaches sanitization policies to strings themselves. Strings derived from user input or other potentially
malicious sources are marked as tainted and are assigned rules as to how they should be sanitized or displayed in different
contexts. These rules are then automatically enforced in places where injection attacks might occur, such as in SQL Queries
or HTML output.

While GuardRails automatically assigns strings a set of default policies, these rules can easily be expanded to include a wide
range of custom behavior. Developers can use annotations to specify different sanitization policies for different fields (see
examples above). These policies may rely on custom sanitization routines and can be set to behave differently based on the
context of where the string appears.

Annotation Policy

@ delete access, :admin
class Workgroup...

Only administrators can delete Workgroups

@ write access, password, lambda{|user| user.id == self.id }
class User...

A user can only change his/her own password

@ read access, lambda{|user| self.friends.contains?(user) }
class Profile...

Only a user’s friends may see his/her profile

Annotation Policy

@ taint, username, AlphaNumeric A username can contain only letters and numbers

@ taint, full_name, NoHTML, TitleTag:
LettersAndSpaces

A full name can contain any non-HTML characters, but can only
contain letters and spaces in a title tag

@ taint, profile, BoldItalicUnderline,
"//script[@language='javascript']": Invisible

A profile can contain bold, italic, and underline tags, but no other
HTML. The string will not be displayed if it appears in javascript
tags.

Data Policies

To prevent many of the common web application
vulnerabilities and to save developers from having
to write tedious security-checking code, GuardRails
allows developers to define security policies using
annotations. These policies are then automatically
enforced throughout the application without the
need for the developer to write additional code.

Not
Displayed

Letters
Only

Alpha-
Numeric

No HTML

Bold Tags
Allowed

Italic Tags
Allowed

Links Only

Numbers
Only

An example taint lattice for strings in HTML
output. HTML-tainted strings are given one or
more of these policies which dictate how the
string should be sanitized when output to HTML.

SQL Injection

match_group = Group.find(:first, :conditions =>
 “group_name like „”
 + params[:name] + “‟”)

While the threat of SQL injection attacks has been greatly reduced with better
Ruby on Rails support and the use of prepared statements, applications can still be
vulnerable to this kind of attack.

This example vulnerability could easily be fixed by using a prepared query, but an
inexperienced developer might miss the problem entirely. The consequences of a
mistake like this are usually quite severe, often allowing an attacker to view arbitrary
data from the database or delete all the contained tables.

An example from out test application PaperTracks of a SQL query that leaves the site open to an injection attack

Cross-Site Scripting

tags = %w(a acronym b strong i em li ul ol h1 h2 h3 h4 h5 h6
 blockquote br cite sub sup ins p)
user_input = sanitize(user_input, :tags => tags, ...)
send(user_input)

Cross-site scripting vulnerabilities are among the most prevalent security issues for modern
web applications. Protecting against cross-site scripting attacks typically involves manually
inserting sanitization code throughout the application so that potentially harmful content is
not fully rendered in the response. The complexity of cross-site attacks, however, means that
it is hard for a developer to ensure that an output truly is secure. Even if all input goes through
sanitization routines, an application can still be vulnerable to second-order injection attacks.

Without the proper sanitization routines, a malicious user can execute arbitrary scripts in the
browsers of other users of the site. Even one poorly sanitized field can lead to a total
compromise of the system.

The above example taken from guide.rubyonrails.org describing countermeasures to security flaws.

• policy type represents the nature of the policy, such
as whether it pertains to creation of the object, or
being allowed to view it.

• fields describe which attributes of the object the
policy pertains to and can be left blank to describe an
entire class.

• expression is either a keyword or a function that
dictates how the policy is enforced.

@ policy type, fields, expression

Model Model.new

Model.associations.delete

Model.destroy

Data
GuardRails

Authorization
Logic

Taint Tracking with Chunks:

Taint tracking of strings typically is handled by having a single bit dictating the taint status for the entire string. This often means that in
cases where strings are combined, benign values can be marked as tainted or vice versa. Instead of having one taint bit for the whole
string, we divide the string into chunks, each of which can have its own taint status.

Concatenation with chunks: “foo” + “bar” → “foobar”

named_scope :visible, lambda { { :conditions => Project.visible_by(User.current) } }

B
ef

o
re

A

ft
er

@subprojects = @project.children.visible

Faulty Access Control

conditions = ["#{Project.table_name}.id
 IN (#{ids.join(',')})
 AND #{Project.visible_by}"]
Issue.send(... :find => { :conditions => conditions})

With many types of user roles and rights to access and edit protected data, proper
access control becomes a vital part of any secure web application. Currently,
access rules are applied to each method that could access sensitive data. This
creates repetitive code and makes it easy to forget to apply proper authorization
checks.

Without the Project.visible_by condition, unauthorized users were able to see the
issues of private projects. This shows the potential damage of omitting just one
authorization check.

find (:all, :limit => count, :conditions => visible_by(user),
 :order => "created_on DESC")

@ read_access, lambda {|user| Project.visible_by(user)}
class Project…

The above example taken from a real security bug in the Redmine application.

With GuardRails, all of the repeated checks in the code above are unnecessary. Instead a single annotation is
sufficient to apply the visibility policy throughout the entire application.

The following code snippets are from different files within the application Redmine and all pertain to ensuring
that users can only see projects they are authorized to see. Typically , code like this must be scattered
throughout the application and forgetting a single one is enough to jeopardize the application’s security.

Guardrail image from www.galaxyfences.com

@rows = @project.descendants.visible

Annotation Syntax:

On the opposite end of the spectrum, there has been recent work in tracking taint at a character level. Because chunks can be any length,
our approach is just as powerful as per character tainting, but less costly. Additionally, our system can support arbitrary taint information,
including separate taint bits for whether a string is SQL-safe or HTML-safe and rules about how the string needs to be sanitized.

